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Abstract
The magnetic excitations of the double-exchange (DE) model are usually
discussed in terms of an equivalent ferromagnetic Heisenberg model. However
this equivalence is valid only at a quasi-classical level—we show that
both quantum and thermal corrections to the magnetic properties of the
DE model differ from any effective Heisenberg model because its spin
excitations interact only indirectly, through the exchange of charge fluctuations.
We also find that the competition between ferromagnetic DE and an
antiferromagnetic superexchange provides a new example of an ‘order from
disorder’ phenomenon—an intermediate spin configuration (either a canted or
a spiral state) is selected by quantum and/or thermal fluctuations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many magnetic systems of current experimental interest, for example the colossal
magnetoresistance (CMR) manganites [1,2] and pyrochlores [3], consist of itinerant electrons
interacting with an array of localized magnetic moments with spin S. The simplest models of
these systems comprise a single tight-binding band of electrons interacting with localized core
spins by a Hund’s rule exchange interaction JH � t

H∞ = −t
∑
〈ij〉α

c
†
iαcjα − JH

∑
iαβ

�Si · c†
iα �σαβciβ (1)

where the sum 〈ij〉 is restricted to neighbouring sites. The ground state of this model must
generally be ferromagnetic (FM), since Hund’s rule requires the spin of itinerant electrons to
be locally aligned with the core spins, and the kinetic energy of electrons is in turn minimized
by making all the electron spins parallel. This effect is usually called ‘double exchange’ (DE),
and the model of equation (1) is referred to as the double-exchange ferromagnet (DEFM).
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In addition to DE interaction, core spins may also interact via a direct superexchange

H2 = J2

∑
〈ij〉

�Si · �Sj . (2)

In CMR materials, J2 is sometimes positive (antiferromagnetic (AF)), in which case
superexchange competes directly with the DE mechanism.

In the classical limit S → ∞, the FM ground state favoured by H1 is stable for all
J2 < J1 where J1 = t̄/4S2, and t̄ is the average kinetic energy per bond in the lattice (see
e.g. [4–8]). For larger values of J2, the competition between AF exchange and the kinetic
energy of electrons gives rise to a uniform phase where neighbouring spins are misaligned
by an angle θ , with cos θ/2 = J1/J2 [4]. However, θ alone does not specify a particular
intermediate configuration—there exist an infinite set of classically degenerate states with the
same θ . The two ends of this set are a two-sublattice canted phase and a spiral phase [4]. This
degeneracy reflects the local classical symmetry—we can take any spin on the A sublattice of
the canted phase and rotate it about the direction of magnetization of the B sublattice without
changing θ . Since it costs no energy to make such an excitation, the system cannot distinguish
between different states, and should be magnetically disordered even at3 T = 0.

The argument about degeneracy, however, does not hold at finite S, and we anticipate
that quantum and/or thermal fluctuations will remove the degeneracy and enable the system
to choose its true ground state. Such ‘order from disorder’ effects have been widely discussed
in the context of magnetic insulators, e.g. for Kagomé antiferromagnets [9]—but not in the
context of interacting electron systems.

The analysis of ‘order from disorder’ effects in systems with local classical symmetry is
generally rather involved as one has to expand around infinitely degenerate state [9]. For DE
systems, one, however, can determine which of the classically degenerate states is selected
by fluctuations by looking for the wavevector Q∗ at which the spin-wave excitation about
the FM state first becomes negative (provided that the system does not undergo a first-order
transition into an inhomogeneous state). The softening at Q∗ = 0 implies the instability
towards a spiral phase, while the softening at Q∗ = (π, π, π) implies the instability towards
a canted phase. This question cannot be answered at a semi-classical level, since to O(∞/S)

the Hamiltonian of equation (1) and (2) can be mapped onto an effective nearest-neighbour
Heisenberg model: (J1 −J2)

∑
〈ij〉 �Si · �Sj (see e.g. [4–8]), and the spin-wave spectrum vanishes

identically for J1 = J2. Once quantum effects are restored, however, fluctuations generate a
long-range interaction between spins which breaks the local classical symmetry. As a result
the mapping onto a nearest-neighbour Heisenberg model breaks down. The issue then reduces
to how quantum and thermal corrections to the spin-wave spectrum of equation (1) distinguish
between the DEFM and nearest-neighbour Heisenberg ferromagnet (HFM). It is this question
that we address.

The analysis in the FM state is easier to perform than an ‘order from disorder’ study in either
canted or spiral states as the FM state is not degenerate and the expansion around it should
be free from singularities (in practice, this implies that corrections to classical dispersions
form regular series in 1/S). On the other hand, ‘order from disorder’ effects for classically
degenerate states are generally stronger because of singularities (for Kagomé antiferromagnets,
the expansion parameter is 1/S2/3 rather than 1/S [9]). From this perspective, our analysis
will only indicate which state is selected near a FM boundary. However, by continuity, we
anticipate that the same state will be selected for all J1/J2.

3 We have performed a classical spin-wave analysis for the canted phase of the DEFM and indeed found that
ωsw(q) ≡ 0 for all q as it should be for a locally degenerate ground state.
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In order to perform calculations beyond the quasi-classical limit, we introduce a new spin-
wave expansion which takes correct account of the dual itinerant/localized nature of electrons
in the DEFM. Using this expansion we evaluate the spin-wave spectrum of the DEFM at
T = 0 and a finite temperature and show that it differs from that in an HFM. Our T = 0 results
agree with earlier numerical [10–12] and analytical studies [13–15], but we shall explain from
a physical point of view why the DEFM differs from the HFM. Our results at finite T are
entirely new.

2. Transformation of Hamiltonian

Given that the Hund’s rule coupling JH is the largest energy scale in the problem it is desirable
to diagonalize this term first and project out all electrons not locally aligned with the core spins.
We should also define spin-wave excitations such that they are the true Goldstone modes of the
order parameter, i.e. transverse fluctuations of the composite spin �Si = �Si + 1

2

∑
αβ c

†
iα �σαβciβ .

We accomplish both of these goals by the following procedure: (i) introducing new Fermi
operators fi andpi which create electronic ‘up’ and ‘down’ states aligned with the quantization
axis of the composite spin and (ii) generalizing the Holstein–Primakoff transformation to the
case where the length of the spin is itself an operator, introducing a corresponding bosonic
operator ãi . To capture the essential physics of the DEFM it is sufficient to know the inverse
transformation to O(1/S):

a = ã

(
1 +

p†p − f †f

4S

)
− f †p√

2S
+ O(1/S3/2)

c↑ = f

(
1 − ã†ã + p†p

4S

)
− pã†

√
2S

+ O(1/S3/2)

c↓ = p

(
1 − ã†ã + ff †

4S

)
+

f ã√
2S

+ O(1/S3/2)

(3)

where a is the Holstein–Primakoff boson associated with the core spin. A more complete
discussion of the transformation will be given elsewhere [16]; here we simply state that the
transformation and its inverse are unitary, and satisfy all required (anti-) commutation relations ,
for example {f, f †} = {p, p†} = [ã, ã†] = 1, [f, ã] = {f, p} = 0 etc, and that our expansion
procedure reproduces all features of an exact solution of the DE model on two sites [17].
Substituting this transformation into equation (1), we find that the Hund’s rule term reduces to

H1 = −JHS

2

[
f †f − p†p

(
1 +

1

S

)
+
f †fp†p

S

]
(4)

where the sum over lattice sites has been suppressed. Clearly p operators describe low-
spin, high-energy excitations and can safely be dropped. Simultaneously, the hopping term
in equation (1) transforms into the Hamiltionian which describes a single band of spinless
fermions interacting with (initially dispersionless) Holstein–Primakoff bosons. On Fourier
transform we obtain

Ht =
∑
k1

(ε1 − µ)f
†
1 f1 +

1

N

∑
k1...k4

V 13
24 f

†
1 f2ã

†
3 ã4δ1+3−2−4 + · · · (5)

V 13
24 = 1

4(S + 1
2 )

[(
1 +

1

8S

)
(ε1+3 + ε2+4)− (ε1 + ε2)

]
(6)

where all energy scales are set by the electron dispersion εk = −ztγk .
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a) b) c) d)

e) f)

Figure 1. (a)–(d) Diagrams contributing to spin-wave self-energy in a ferromagnet to order
O(1/S2). Only diagrams (a) and (b) are physically relevant. (e), (f ) The representation of diagram
(b) via an effective four-boson interaction mediated by the charge susceptibility (a particle–hole
polarization bubble).

3. Spin-wave dispersion

The Hamiltonian of equation (5) does not contain a bare spin-wave dispersion—it emerges
only through interaction with electrons. Accordingly, the spin-wave propagator D(q,%) =
[% − &(q,%)]−1 where &(q,%) is the bosonic self-energy. The leading ‘semi-classical’
spin-wave dispersion originates from the fact that the oscillations of the core spins destroy
perfect alignment of the spins of the itinerant electrons, which increases their kinetic energy.
Diagrammatically this corresponds to the process in figure 1(a), which gives

&(1a)(q) = zJ1S[1 − γq] J1 = t

4S2

1

N

∑
�k
nkγk. (7)

At this level we indeed reproduce the spin-wave spectrum of a nearest-neighbour HFM.
The equivalence between DEFM and HFM is, however, lost beyond the semi-classical

approximation. There are four self-energy contributions at O(1/S2), one from each of the
diagrams in figures 1(a)–(d). At finite temperature these also include a contribution from a
sixfold term in Ht , omitted from equation (5). However we verified that there is considerable
cancellation between terms, and all new physical effects originate from the diagram in
figure 1(b). This diagram can be thought of as a first-order bosonic self-energy due to effective
four-boson interaction mediated by fermions (see figures 1(e) and (f )). The difference between
DEFM and the Heisenberg model then can be readily understood on general grounds. Indeed,
in an HFM, the four-boson vertex does not depend on frequency and scales as q2l2 [18], where
q, l � 1 are the bosonic momenta. In the DEFM, the interaction is mediated by the dynamical
charge susceptibility of the Fermi gas, )(q − l, ωp −ωl) (see figure 1(e)), which is generally
a complex function of momentum and frequency. This gives rise to two effects which both are
relevant to our analysis. (i) )(q − l, ωp − ωl) has a branch cut, which gives rise to a nonzero
renormalization of the spin-wave dispersion at T = 0. (ii) The static )(q − l, 0), relevant
to thermal corrections to the dispersion at T < J1S, scales differently from J1: at small pF ,
J1 ∝ p3

F , while)(q− l) ∝ pF at q, ltyp � pF and)(q− l) ∝ p3
F /|q− l|2 for |q− l| � pF .

Accordingly, at small doping x, when typical q and l exceed pF , the momentum dependence
of )(q− l) causes thermal self-energy corrections in the DEFM to have a different functional
form from those in the HFM.
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Figure 2. Dispersion of spin waves in a cubic DEFM with electron doping x = 0.7 and spin
S = 3/2, in units of the electron bandwidth 2zt = 1.0. Solid curve—dispersion of classically
equivalent Heisenberg model. Dashed curves—dispersion of DEFM including leading quantum
and thermal corrections for (top to bottom) T = 0, T = 2D/3 and T = D, where D = 12J1S

is the bandwidth of spin-wave excitations. Inset—thermal corrections to spin-wave dispersion in
a DEFM for q = (π/2, π/2, π/2) (points) compared with those for an equivalent HFM (solid
curve). Dashed curves represent T 5/2 and T 3/2 power laws as a guide to the eye.

4. Quantum corrections at T = 0

The leading correction to equation (7) at T = 0 is

&
(2)
T=0(q) = − zt

4S2

1

N2

∑
p,l

nF (p)(1 − nF (l))

[
(1 − γq)γp

γp + γl
γp − γl

− γ 2
p − γ 2

q+p

γp − γl

]
(8)

where nF (l) = nF (εl) is a Fermi function which, for T = 0, reduces to a step function.
The first term in equation (8) simply renormalizes the classical Heisenberg-like spin-wave
dispersion, while the second has a dependence on q which is quite different from that in the
nearest-neighbour Heisenberg model. This term is either positive or negative throughout the
Brillouin zone (BZ), depending on the electronic density, and is symmetric under �q → �π − �q,
where �π = (π, π, π). Along the zone diagonal, it reduces to (zt/4S2)I (x)[1 − cos(2q)],
where I (x) = (1/N2)

∑
pl nF (p)(1 −nF (l)) (γ

2
p − γ 2

p+π/2)/(γp − γl) changes sign twice as a
function of x. This form of the correction to Heisenberg dispersion is comparable to that found
in numerical studies of the DE model on a ring [10] and with equivalent analytical results [15].
The renormalized spin-wave dispersion of the DEFM at T = 0 is shown in figure 2. A notable
feature is the marked suppression of spin-wave dispersion for all symmetry directions lying
on the boundary of the BZ.

We are now in a position to answer the question posed above about order from disorder
effects. We find that for intermediate densities 0.31(7) < x < 0.92(7) in two dimensions and
0.31(7) < x < 0.94(2) in three dimensions, I (x) < 0 and quantum effects cause a relative
softening of spin-wave modes near the zone centre. This means that the first instability of the
DEFM with competing AF exchange interactions is against a spiral phase withQ∗ ≈ (0, 0, 0).
On the other hand, for a small density of electrons (or holes), I (x) > 0, and quantum effects
instead lead to a relative softening of modes near the zone boundary. In this case the spin-wave
spectrum first becomes unstable against a canted spin configuration with Q∗ = (π, π, π).
These results are in almost perfect agreement with numerical studies [12].
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5. Corrections to the dispersion at finite T

In a Heisenberg model, the thermal self-energy has the form &HFM
T (q) = −2zJ1S(1 − γq)

β(T )/4S2 whereβ(T ) = 1/N
∑

l nB(l)(1−γl) [18], where nB(l) = nB(εl) is a Bose function.
At T � J1S, typical l are small, and β(T ) ≈ (ζ(5/2)/32π3/2) (T /J1S)

5/2. Most importantly,
the temperature effects do not change the form of spin-wave dispersion, which still remains
proportional to 1 − γq . In the case of the DEFM we obtain

&
(2)
T (q) = − zt

4S2

1

N2

∑
p,l

nB(l)
nF (p + m/2)− nF (p −m/2)

γp+m/2 − γp−m/2

× (γp−m/2 − γp+q−m/2)(γp+m/2 − γp+q−m/2). (9)

Here �m = �q − �l, and nB(l) = nB(%(l)) and nF (k) = nF (εk). The behaviour of &(2)
T (q)

depends on doping, and is quite different in the limits of small and large doping. We
analysed equation (9) in detail analytically for T � J1S and x � 1 and found that
&
(2)
T (q) ∝ q2T 5/2 (as in HAF) only at very small q � pF . Even in this limit, the overall factor

is larger than in HFM by a factor ∝ 1/p2
F (recall that J1 ∝ p3

F ). At arbitrary q, the self-energy
deviates down from (1 − γq)T

5/2 form due to the reduction of the charge susceptibility. For
q � pF we obtained

&
(2)
T (q) = t p3

F

24π2S2N

∑
l

nB(l)l
2

[
1 + γq − 1

3

1 − γ2q

1 − γq

]
. (10)

We see that&(2)
T (q) ∝ p3

F T
5/2 loses q2 dependence. Comparing this result with that at q < pF ,

we see that &(2)
T (q) is reduced by p2

F /q
2, precisely as anticipated on general grounds.

At larger x, we found numerically that the thermal corrections to spin-wave dispersion in
the DEFM have a similar temperature dependence to those in the HFM, but are substantially
larger, and are not proportional to 1 − γq for large q. For 0.25 < x < 0.75 (dopings relevant
for comparison with the manganites), we find that the thermal self-energy can be approximated
by &(2)

T (q) ≈ α(q, T )&HFM
T (q), where α(q, T ) ≈ 5 is a dimensionless function. Corrections

are illustrated in figure 2. In order to more clearly illustrate the trends we consider in this figure
temperatures up to T ∼ D = 2zJ1S, where D is the bandwidth of the spin-wave excitations.
Note, however, that the spin-wave expansion breaks down for T � D even if D < Tc [23].

Returning to the issue of order from disorder, we see that for realisticx classical fluctuations
primarily soften the dispersion near q = 0 and hence favour the spiral state. This implies that
the range of dopings where this phase is selected increases with T , at least for T < J1S.

6. Conclusions

In this letter we have used a new spin-wave expansion to explore the extent to which the spin
dynamics in a DEFM are the same as in those in an HFM. We found that the two models are
equivalent at the classical level (S → ∞), but that both quantum and thermal corrections in the
DEFM are different because the interaction between spin waves is mediated by fermions and
is qualitatively different from that in an HFM. We studied in the detail the form of quantum
and thermal corrections to the spin-wave dispersion in DEFM.

We applied the results to address the issue of which state is selected near the FM
instability in the case of competition between ferromagnetic DE and a direct antiferromagnetic
superexchange. We found that fluctuations select either a canted state or a spiral state,
depending on the electron density.

The softening of zone boundary spin waves has been observed in neutron scattering
experiments on the CMR manganites [19] at a hole doping x̃ = 1 − x ∼ 0.3. It has
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been suggested that this softening may be due to deviations from Heisenberg behaviour in
the DEFM [10, 15, 19], or to another mechanism (e.g. a coupling to phonons [14, 20]). Our
analysis essentially eliminates the first possibility as for x ∼ 0.7 our zero-temperature theory
predicts a relative hardening rather than softening of the dispersion at (π, π, π).

The issue left for further studies is a possible phase separation in the non-ferromagnetic
regime [21]. To study this possibility in our approach, one has to analyse the sign of the
longitudinal susceptibility in, e.g., the canted phase. If it is negative, then the system is
unstable towards phase separation [22]. There calculations are clearly called for.

It is our pleasure to acknowledge helpful conversations with J Betouras, G Gehring, D Golosov,
R Joynt and M Rzchowski. This work was supported under NSF grants DMR 9632527 (NS)
and DMR-9979749 (AVC) and the visitor programme of MPI-PKS.
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